Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long‐range and periodic arrangement of carbon atoms, thus, the characterization of graphitic carbon electrodes necessitatesin‐situatomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques ofin‐situattenuated total reflectance infrared spectroscopy and first‐principles calculations to reveal that graphitic carbon electrodes exhibit electric‐field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder. With this platform, we identify graphitic regions from amorphous domains by discovering that they demonstrate opposing electric‐field‐dependent infrared activity under electrochemical conditions. Our work provides a roadmap for identifying mesoscopic disorder in bulk carbon materials under potential bias.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Free, publicly-accessible full text available July 9, 2026
-
A heterometallic single-source molecular precursor Li2Mn2(tbaoac)6 (1 , tbaoac = tert -butyl acetoacetato) has been specifically designed to achieve the lowest decomposition temperature and a clean conversion to mixed-metal oxides. The crystal structure of this tetranuclear molecule was determined by single crystal X-ray diffraction, and the retention of heterometallic structure in solution and in the gas phase was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry, respectively. Thermal decomposition of this precursor at the temperatures as low as 310 oC resulted in a new metastable oxide phase formulated as lithium-rich, oxygen-deficient spinel Li1.5Mn1.5O3.5. This formulation was supported by a comprehensive suite of techniques including thermogravimetric/differential thermal analysis, elemental analysis, inductively coupled mass spectrometry, iodometric titration, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy studies, and Rietveld refinement from powder X-ray diffraction data. Upon heating to about 400 oC, this new low-temperature phase disproportionates stoichiometrically, gradually converting to layered Li2MnO3 and spinel Li1+x Mn2-x O4 (x < 0.5). Further heating to 750 oC results in formation of thermodynamically stable Li2MnO3 and LiMn2O4 phases.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Abstract The optimization of the quantum efficiency of single-molecule light-driven rotary motors typically relies on chemical modifications. While, in isolated conditions, computational methods have been frequently used to design more efficient motors, the role played by the solvent environment has not been satisfactorily investigated. In this study, we used multiscale nonadiabatic molecular dynamics simulations of the working cycle of a 2-stroke photon-only molecular rotary motor. The results, which display dynamics consistent with the available transient spectroscopy measurements, predict a considerable decrease in the isomerisation quantum efficiency in methanol solution with respect to the gas phase. The origin of such a decrease is traced back to the ability of the motor to establish hydrogen bonds with solvent molecules. The analysis suggests that a modified motor with a reduced ability to form hydrogen bonds will display increased quantum efficiency, therefore extending the set of engineering rules available for designing light-driven rotary motors.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 11, 2025
-
Iron–sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn–H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.more » « less
An official website of the United States government
